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Avalanche PhotoDiodes (APDs) 

Linear mode: V < VBD: 
•  Photo-current amplified by a 

factor M 
•  Output current proportional 

to the optical power 

P-N junctions diodes specially made to exploit impact ionization effects 

Geiger mode: V > VBD: 
•  Digital photon counter 
•  Output signal stream with N 

pulses/s 
•  Core of SiPMs 
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Linear-mode APDs are suitable for applications 
requiring high bandwidth and high sensitivity: 

•  Telecommunication receivers 

•  High speed laser scanners 

•  Time-resolved imaging (ToF ranging, FLIM) 

•  X – γ rays, ionizing particles for biomedical and 
physics applications (w and w/o scintillators) 

Linear-Mode APDs applications 
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•  Quantum Efficiency 

•  Excess noise factor 

•  Gain-Bandwidth product 

•  Dark current 

•  Breakdown voltage 

•  Temperature sensitivity 

•  Breakdown voltage uniformity 

•  Avalanche gain uniformity 
Pixel	
  	
  
Arrays	
  

Linear-mode APDs Figures of Merit 
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M: multiplication gain 

F: excess noise factor 

APD noise: 

α: electron ionization rate 
	



β: hole ionization rate 

Excess noise factor 

holes (high k) high F 

electrons (low k) small F 

Avalanche initiated by: 
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R.J. McIntyre, “Multiplication Noise in Uniform Avalanche Diodes”,  
IEEE Trans. Electron Devices 13 (1966) 164 
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Low Gain Avalanche Detector (LGAD) 

G. Pellegrini, et al., HSTD9 (2013) 

•  APDs revisited for ionizing particles 

•  Aiming at low gain both before and 
after irradiation 

•  Gain vs breakdown voltage trade-off 

•  High sensitivity to the implant dose of 
the multiplication layer 

•  JTE to prevent from edge breakdown 
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From pads to pixels 
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Possible segmentation options in electron multiplying structures 

Segmentation 

Read electrons 
Read holes 
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Divided cathode Divided anode 

•  APD arrays for fast X-ray hybrid pixel detectors 
•  Special technology developed by Excelitas Canada Inc. 
•  Thickness 120 µm and 200 µm, gain ~ 100 @ Vbias = 500V 
•  Large gain non uniformity ±15% 

C. Thil et al., 2012 IEEE NSS, N1-231 

Not a completely new problem … 
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•  Pixel side is simple, gain side quite complex (4 doping steps) 
•  Plan: start from thick 6” wafers (275 µm) before going thinner (100 µm)  

•  TCAD simulations to predict the performance  

A double-sided pixelated LGAD 

MGR MGR 

p-stop 

G.F. Dalla Betta, RESMDD 2014 
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TCAD (1): Electrical parameters 
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Vdepl ~ 40V ~ 170V 

•  Simulation results scaled to 50x50 
µm2 pixels 

•  Strong impact of the B dose on the 
breakdown voltage 

•  Comparison at similar breakdown 
voltage 

•  Two-phase depletion behavior 
observed in both C-V and I-V 
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TCAD (2): Gain and noise 
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•  Simulated with mip (Heavy Ion Model) 
in cylindrical coordinates 

•  Gain defined as ratio of integral charge 
with/without avalanche 

•  Similar gain at high voltage (~15) but 
with quite different trend 

Excess noise factor can be fit with: 
 
 
 
 
k= αp/αn – ionization ratio 

F =M ! k + 2" 1
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R.J. McIntyre, IEEE TED 13 (1966) 164 
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TCAD (3): Signals 
•  Current pulses in response to a mip 

(cylindrical coordinates) at different 
voltages 

•  Pulse duration dominated by drift of 
multiplied holes, thus proportional to the 
substrate thickness 

•  Impact of segmentation (weighting 
field): significant delay for 275 µm, 
much smaller for 100 µm  
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Going one step further 

•  Fast timing circuits might be difficult to embed in small pixels 
•  But different functions could be divided between the two sides: 

- Position measurement from the small pixel side 
- Time measurement from the gain side à capacitance is an issue 

•  Segmentation of the gain side (macro – pixels, ~1mm2, ~1pF) 

N. Cartiglia, RESMDD 2014 
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Segmentation of the gain side 

•  Same technology, different layout 
•  Acceptable efficiency reduction from macro-pixel edges (~5%) 

•  It can work safely up to >1200V before breakdown 
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•  Significant results in the past ten years 
•  Mainly driven by telecom receivers, but 

increasing interest also for imaging  
•  Advantages: 

–  Integrated electronics: low parasitics, low costs 
–  Array fabrication possible 

•  Challenges: 
–  Guard ring fabrication 
–  Doping profiles not optimized for low noise and high 

quantum efficiency 

APD integration in CMOS 
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p+/nwell APD in 0.15µm CMOS 

•  Shallow junction ~ 0.2µm 

•  p-sub low-doped guard ring 

•  Active region: p+/nwell junction 

APD active region can be 
 approximated with an  
abrupt junction 

L. Pancheri et al., Proc. SPIE 8982 (2014) 
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pwell/n-iso APD in 0.15µm CMOS 

APD active region can be 
 approximated with a  
linearly graded junction 

§  Deep junction > 1µm 

•  p-sub low-doped guard ring 

•  Active region: pwell/n-iso junction 

L. Pancheri et al., IEEE EDL 35 (2014) 566 
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VB = 16.1.V, σ = 90mV 

Gain vs Voltage 

VB = 23.1 V, σ = 260mV 
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Quantum Efficiency 

Better in the UV and blue Better in the NIR 

In both cases interference fringes due to non optimized optical stack (no ARC) 
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•  UV light: electron-initiated avalanche 
•  NIR light: mixed – majority of electron injection 

•  UV light: electron-initiated avalanche 
•  NIR light: mixed – majority of hole injection 

Excess Noise Factor 
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1) Local model:  
α depends only on the electric field E  

Ionization Rate Models 

2) Non-local model:  
•  The electron needs to acquire energy from E  

 before being able to cause impact ionization  
•  α depends on electric field E and position x  

3) Simplified non-local model:  
•  Dead-space de defines a sharp transition 
•  de  proportional to ionization threshold energy 

Local model: McIntyre, IEEE TED, 1966 
Ion. rates: Okuto and Crowell, SSE,1975 

Non-local (dead-space) model: Hayat et al., IEEE JQE, 1992 
Ion. rates (nonlocal): Okuto and Crowell, Phys. Rev. B, 1974 
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F vs M: model comparison 

•  Local model not suitable due to high electric field and narrow space-charge regions 
•  Very good agreement with non-local models for electron-initiated avalanche 
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F vs M: non-local model 

•  Also non-local model with hole-initiated avalanche overestimates F 
•  Good agreement with NIR approximation (mixed injection) with Xj as a fitting parameter  
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Conclusions 
1)  Design options for pixelated LGADs were reported 

- TCAD simulations have been used to predict the 
sensor performance with encouraging results 

2) Low-noise APDs can be integrated in CMOS processes 

- Good uniformity à Arrays are feasible 

- Non-local ionization models can yield an accurate 
excess noise predictions 
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